'Time'에 해당되는 글 4건

  1. 2013.01.22 More Study > Transition > Transition Time and Fabrication Process Technology
  2. 2013.01.22 More Study > Transition > Transition Time and Physical Length
  3. 2011.07.19 More Study > Transition >Rise Time and Frequency
  4. 2011.07.05 Basic > Signal > Frequency

More Study > Transition > Transition Time and Fabrication Process Technology

PCB INSIDE/More Study 2013. 1. 22. 14:48

Transition Time and Fabrication Process Technology

 

얼마 전에 하이닉스 에서 세계 최초로 44 나노 1Gb DDR3 D램을 만들었다는 기사가 실렸다(2009.2.8). 여기서 말하는 44 나도는 FET 반도체에서 게이트의 폭을 말하는 것으로 게이트 폭이 44 나노미터(nm)라는 것이다. 지금 대중적인 것은 60 나노에서 90 나노 대 이다. 물론 레거시 디바이스들은 130나노 이상의 공정도 많이 사용한다. 공정 기술의 발달로 기본 소자인 트랜지스터의 크기자 자꾸 줄어들고 있다. 소자의 크기자 줄어들기 때문에 단위 면적당 더 많은 소자를 만들 수 있고 결과적으로 비용이 절감되는 효과가 발생한다.

그런데, 이렇게 게이트 선 폭이 줄어들면, 보드 디자이너의 입장에서 최대 관심사 중에 하나인 신호의 transition time이 변하게 된다.

 

위 그름의 오른쪽이 기존 공정이라고 하고 왼쪽이 새로운 공정이라고 하자. 기존 공정에서 제작된 트랜지스터의 경우, 게이트에 전압이 인가 되어 스위치가 켜지면 드레인(D)의 레벨은 소스(S)의 레벨에 따라서 변하게 된다. 이 때 드레인의 레벨이 변하는 시간(T1)은 소스에서 전류가 드레인 쪽으로 흘러 들어오는 데까지 걸리는 시간에 비례한다. 그런데, 그 시간은 곧 게이트 아래 형성되는 채널의 길이(L1)와 비례하므로 T1 L1의 관계가 형성된다. 따라서, 새로운 공정에서 제작된 트랜지스터는 게이트의 길이(L2)가 줄어들었으므로, 스위치가 켜졌을 때 드레인에서 레벨이 변하는 데 걸리는 시간(T2)도 줄어들게 된다.

디지털 엔지니어 관점에서, 이렇게 시간이 줄어들게 되면, 동작주파수 대비 불확실한 구간이 짧아지게 되므로 좀 더 동작 주파수를 올릴 수 있는 마진이 생기게 된다. , 어떤 회로적 수정 없이 동작 주파수를 좀 더 올릴 수 있다. 따라서, 공정이 작아지면, 제작 비용도 줄이고 성능도 좋아지는 1 2조의 효과(도랑 치고 가제 잡고, 마당 쓸고 돈도 줍고, 님도 보고 뽕도 따고)가 발생한다.

그러나, 보드 디자이너의 관점에서는, transition time이 짧아진다는 것은 곳 더 큰 고주파가 발생된다는 의미이고, 노이즈 마진을 손해 본다는 의미이다. 예들 들어, 회로 수정 없이 크기만 줄어든 칩이 있을 경우(따라서 기능은 똑 같은), 기존 칩보다 노이즈를 더 많이 유발할 것이므로, 노이즈 대비책을 재 검토하지 않으면, 보드 레벨에서 오 동작을 유발할 수도 있다.

기능은 같지만 진보된 공정으로 새로 제작된 부품들이 많이 나온다. 따라서, 기존 칩 대신에 새로운 칩이 채택될 경우에, 보드 레벨에서 이런 칩들이 문제를 일으킬 지 여부에 대해서 반드시 선행 검토가 되어야 한다.


:

More Study > Transition > Transition Time and Physical Length

PCB INSIDE/More Study 2013. 1. 22. 14:46

Transition Time and Physical Length

 

일반 도로에서 자동차가 다닐 때와 고속 도로에서 자동차가 다닐 때, 운전자의 시야 각이 다르다. 고속 도로에서는 차의 속도가 빨라져서 운전자의 시야 각이 좁아진다. 더 심한 예로, 전투기 조종사의 경우 음속으로 비행시 시야 각이 바늘처럼 좁아진다고 한다(정말로 이렇게까지 좁아질지 궁금하다). 시야 각이 좁아지면 주변의 사물을 인식하는 능력이 떨어진다. 생각해 보라. 우리가 걸어 다니거나 천천히 차를 운전할 경우, 주변의 나무도 볼 수 있고, 옆에 사고 난 차량도 다 보고 간다. 그러나 100 Km/h의 속도로 달리면서 옆에 나무를 볼 수 있는가? 볼 수 없다.

신호도 똑같다. 신호 transition 구간의 시간이 길면(위의 예와 비교해서 차의 속도가 빠르면) 신호가 지나가는 conductor의 임피던스 변화를 인지하지 못한다. 그러나 transition 구간의 시간이 짧으면(속도가 느리면) 임피던스의 변화를 인지하고 신호는 거기에 반응하게 된다.

신호 transition 구간이 길다 혹은 짧다 라고 말하는 것은 상대적인 것으로 신호가 출발해서 도착할 때까지의 물리적인 거리와 관련이 있다. 신호가 출발해서 transition이 다 일어나기도 전에 목적지에 도착한다면 transition 구간의 시간이 긴 것이고, 출발지와 목적지가 어느 정도 동기화 되어 있다고 볼 수 있다. 즉 신호가 매우 빨리 목적지에 도착한 것이다. 반대로, 신호가 출발한 후에 transition이 완료되어도 목적지에 도착하지 못하면 transition 구간의 시간이 짧은 것이고 출발지와 목적지는 비동기화 되어 있다고 볼 수 있다. 즉 신호는 한참 있다가 목적지에 도착한 것이다. 주의 해야 할 것은, 여기서 말하는 속도가 신호의 전송속도가 아니라, 출발지에서 목적지까지 도착하는 상대적인 개념이라는 것이다.

그래서 위의 예처럼 transition time이 길면 상대적으로 속도가 빠른 것이고, transition time이 짧으면 상대적으로 속도가 느린 것이다. 상대적인 것이다. 출발지와 목적지가 동기화 되어 있는 경우, 출발하기 무섭게 목적지에 도착하므로 주변을 볼 여유가 없다. 반면에 비동기화 되어 있는 경우, 도착할 때까지 시간이 충분하므로(속도가 느리므로) 주변을 볼 여유(?)가 생긴다. conductor의 임피던스의 영향을 보게 된다. 이렇게 conductor의 영향을 볼 정도로 긴 경우 전송선(transmission line)을 사용해야 한다.

어떤 conductor를 전송선으로 볼 것인가 아닌가? 혹은 어떤 특정 구간을 전송선으로 볼 것인가 아닌가는 상대적인 것이다. 다른 관점으로 transition time impedance의 영향을 한 번 더 살펴보자. 도로가 있고 그 위를 바퀴가 굴러간다고 생각해 보자. 도로가 완벽하게 평평하다면 바퀴의 크기에 상관없이 바퀴는 흔들림 없이 수평으로 이동할 수 있다. 그런데, 도로에 10 cm 의 폭과 깊이를 갖는 홈이 파여 있다고 하자. 바퀴의 지름이 1 m 정도 된다고 하면, 홈은 바퀴의 이동에 별로 영향을 주지 않을 것이다. 그러나 바퀴의 지름이 30 cm 정도 된다고 하면 어느 정도 아래로 덜컹 거리며 심한 충경을 줄 것이다. 도로를 전송선이라고 가정하면, 10 cm의 홈은 임피던스가 깨진 구간이다. 홈의 깊이는 깨진 정도를 나타내는 것이다. 바퀴의 둘레는 신호의 transition time에 비유할 수 있다. 바퀴가 크다는 것은 transition time이 길다는 것이다. 따라서 상대적을 짧은 홈은 전송선이 될 수 없고 영향을 별로 받지 않는다. 반면에 바퀴가 작은 경우는 transition time이 짧은 경우로, 홈을 전송선으로 인식할 수도 있다. 이 경우 임피던스 부정합으로 인한 심한 반사(노이즈)가 발생할 수 있다.

:

More Study > Transition >Rise Time and Frequency

PCB INSIDE/More Study 2011. 7. 19. 14:35

Transition Time and Frequency (트랜지션 타임과 주파수의 관계)

 

디지털 회로에서 주파수라 하면 클럭의 동작이 이루어지는 주파수를 말한다. 신호는 대부분 이 클럭의 주파수에 동기 되에 나가거나 들어오게 된다. 신호는 High인 부분과 Low인 부분 그리고 그 두 상태에서 변화가 일어나는 부분(트랜지션)으로 구성이 된다. 일반적으로 디지털 회로에서 신호의 모양은 아래 그림의 검은색 선처럼 표현이 된다. 변화가 없는 부분은 평평한 모양이고 변화가 있는 부분은 기울기를 가진 직선 모양이다.

그런데, 보드디자인(SI 분야)에서 주파수라고 하면 사인 파를 의미한다. 사인 파 중에서 가장 높은 주파수 성분이 가장 큰 노이즈를 유발한다. 따라서, 디지털 신호와 실제 최고 주파수 성분인 사인 파 신호와의 관계를 이해해야 한다.

신호의 상태가 트랜지션 하는 부분의 파형을 살펴보면 사인 파와 매우 유사한 모양임을 알 수 있다. 따라서 상태가 변하는 부분을 자신의 일부분으로 하는 가상의 사인 파를 그리면 위 그림의 빨간 선과 같이 된다. 그리고 그 사인 파의 주파수가 그 신호의 최고 주파수 성분이 된다. 신호의 평평한 부분은 얼마든지 길게 할 수 있으므로 최고 주파수를 결정하는 것과는 무관하다.

그러나 일반적으로 반도체 공정 기술의 발달과 함께 트랜지션 속도가 빨라지고 동작속도도 빨라지는 경향이 있으므로, 트랜지션 시간과 동작 주기는 어느 정도 관계가 있다. 일반적으로 저속일 경우 트랜지션 시간은 동작 주기의 1/10 이하이고, 고속일 경우 1/5 이상이다. 평균적으로 1/10 ~ 1/5 정도를 생각하면 된다.

마지막으로 트랜지션 시간과 사인 파 주파수의 관계를 생각해 보자. 아래 그림은 사인 파의 반주기(π)를 표시한 것이다. 크기는 0 ~ 1mapping 시켰다. 그림으로 알 수 있는 것은 0에서 1로 변하는데 π 만큼의 시간이 필요하다는 것이다. 트랜지션 시간의 10 ~ 90%(주기/5)이고, 20 ~ 80%(주기/3)이다. 어떤 부품 rising time에 관한 spec 20 ~ 80% swing 할 때의 시간으로 표현되어 있다면, 그 값에 3을 곱한 결과로 1을 나누면 그 부품에서 나오는 신호의 최고 주파수 성분을 알 수 있다.


:

Basic > Signal > Frequency

PCB INSIDE/BASIC 2011. 7. 5. 21:51

Frequency (주파수)

 

신호란 무엇인가? 일반적으로 신호는 전압의 상태를 말한다. 전압이 높거나 낮음에 어떤 의미를 부여한 다음 그 전압의 상태를 읽어서 의미를 해석하게 된다. 전류의 흐름을 제어해서 전압의 상태를 우리가 원하는 상태로 만들 수 있다. 물론 반대로 전압을 제어해서 전류의 흐름을 통제할 수 도 있을 것이다. 여기서는 일반적인 칩과 칩 사이에서 신호를 주고 받을 때를 가정한다.

전류의 흐름에 변화가 없을 때를 우리는 DC라고 부른다. 즉 흐르는 전류의 양이 일정하거나 없을 때이다. 이 경우에는 전류에 변화가 없으므로 전압에도 변화가 없고 당연히 신호의 상태에도 변화가 발생하지 않는다. 반면에 전류의 흐름에 변화가 생기면 전압의 상태에도 변화가 생기고 신호의 상태에도 변화가 생긴다. 이런 경우를 AC라고 한다.

전류의 변화는 무엇으로 통제할까? 그것은 IC 속에 있는 트랜지스터라고 하는 스위치를 가지고 한다. 이 스위치를 켜거나 꺼서, 전류를 흐르게 하거나 흐리지 않게 한다. 이 때, 스위치를 켜거나 끄는 동작이 이루어지는 최소 주기를 operating frequency(동작 주파수)라고 한다. 일반적으로 디지털 엔지니어들이 말하는 주파수가 바로 이 주파수 이다. 그런데 실제로 전류의 흐름을 보면, 스위치가 동작하는 시간에 전류의 변화가 발생을 하고 일단 스위치 동작이 끝나고 나면 전류의 흐름은 일정하게 된다는 것이다. 따라서 신호의 현상(전류 흐름에 의한 현상)에 가장 큰 영향을 주는 것은 동작 주파수가 아니라, 스위치가 동작하는 시간이다. 이 스위칭 타임이 신호의 rise time 혹은 fall time이라고 불리는 시간이다. 신호가 low 상태에서 high 상태로 가거나 high 상태에서 low 상태로 변하는데 걸리는 시간이다. 그래서 어떤 신호를 살펴보면, 거기에는 rise time에 해당하는 최고 주파수의 신호를 포함해서 그것의 1/3, 1/5, …… 주파수 성분과 동작 주파수와 그것의 배수에 해당하는 주파수 성분이 포함되어 있다.

 

엔지니어가 종사하는 분야에 따라서 주파수가 의미하는 바가 다르다. 앞서 언급 되었듯이 디지털 분야에서는 동작 주파수를 주파수라고 한다. 이런 신호는 대부분 구형파(square wave) 모양을 하고 있다. RF 분야에서 말하는 주파수는 사인파(sine wave) 이다. 그리고 실제로 보드 디자인에서 중요한 부분도 바로 사인파 모양이다.

요즘 만들어지는 보드의 대부분이 디지털 보드이다. 따라서, 거기서 말하는 주파수를 그대로 적용하면 안되고 그것을 사인파로 환산한 주파수를 디자인 시에 고려해야 한다. 데이터시트에 rise time이 나와 있다면 그대로 적용하면 되고, 그렇지 않다면 경우에 따라서 동작주파수의 최소 3배 혹은 5배를 곱한 주파수를 사용하는 것이 바람직하다. 수 백 MHz를 넘어서는 고속 신호에서는 최소 3배를 곱하고 100 MHz 이하에서는 최소 5배 이상을 곱해주는 것이 바람직하다. 이것은 커넥터나 케이블 등의 인터컨넥션 관련 부품을 선정할 때 중요한 기준이 된다.

 

다시 한 번 강조하면, frequency = 1 / rise time 이다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Current  (0) 2011.07.05
Basic > Signal > Voltage  (0) 2011.07.05
Basic > Signal > Fourier Analysis  (0) 2011.07.05
Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
: