Basic > Signal > Fourier Analysis

PCB INSIDE/BASIC 2011. 7. 5. 21:50

Fourier analysis (후리에 해석)


후리에 해석은 각기 다른 주파수를 가지고 있는 싸인 함수로 원래의 함수를 분해하는 것이다. 이 싸인 함수들을 다시 조합하면 원래의 함수로 돌아갈 수 있는데 이 경우는 후리에 합성이라고 부른다. 후리에라는 이름은 이것을 처음 소개한 프랑스 수학자 후리에에서 따온 것이다.

 

후리에 시리즈에 따르면 구형파는 사인파의 조합으로 표현될 수 있는데 다음 식과 같다.

 

위 식에서 무한대로 가게 되면 완전한 직각 모양의 구형파가 된다. 아래 그림들 살펴 보라.


더 많은 harmonic을 사용할수록 구형파에 더 가까워진다. 우리가 신호에 사용하는 파형들은 구형파에 가깝기는 하지만 완벽한 구형파는 아니다. 따라서 너무 많은 harmonic을 고려하기 힘들기 때문에 rise time에 해당하는 주파수 성분의 harmoic까지 고려하면 된다. 여기서 중요시 보아야 할 것은 1 번째 harmonic cos(ωt)에서 ω가 동작 주파수라는 것이다.

다시 한번 강조 하면 제일 높은 주파수 성분을 고려해야 한다. SI에 문제를 제일 크게 유발하는 부분 바로 그 부분이기 때문이다.

 

후리에 분석을 이용하면 매우 좋은 점이 하나 있는데, 그것은 신호를 시간 영역이 아닌 주파수 영역에서 볼 수 있다는 것이다. 신호의 주파수 구성 성분을 알면 신호를 처리하는데 여러 가지로 장점이 많이 생긴다.

식에서 눈치 챘을 수도 있는데, 신호의 주파수 성분이 불연속적이라는 사실도 기억하자.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Voltage  (0) 2011.07.05
Basic > Signal > Frequency  (0) 2011.07.05
Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
:

Basic > Signal > Propagation

PCB INSIDE/BASIC 2011. 7. 5. 21:48

Propagation (신호의 진행)

 

신호가 진행한다는 것은 어떤 루프가 형성이 되고 그 루프를 따라 전류가 흐른다는 것이다. 루프는 일반적으로 2개의 도체로 구성이 되는 데 하나는 칩에서 신호가 나오는 신호 선이며 다른 하나는 전류가 원래의 위치로 돌아가는데 필요한 선인 그라운드나 파워로 사용되는 선(실제로는 주로 판으로 구성)이다. 루프는 연결이 된 하나의 선인데 왜 2개가 필요하다고 하는 것일까? 사실은 2개의 선 사이에 캐퍼시터라는 두 선 사이의 다리 역할을 하는 것이 있어서 하나의 루프처럼 동작을 하게 된다. 그리고 이것을 전기적인 등가 회로로 그리면 아래 그림과 같다. 아래 그림에서는 돌아오는 쪽의 인덕터 성분은 생략했다.

 

위 두 그림 중에서 어느 그림이 맞을까? 정답은 첫 번째 그림이다. 전류는 칩에서 나오자마자 신호선과 리턴 경로 사이의 첫 번째 기생(?) 캐퍼시터를 경유하여 돌아오게 된다. 첫 번째 캐퍼시터가 충전이 다 되면 전류는 두 번째 캐퍼시터를 경유하여 다시 돌아오게 되고, 마찬가지로 계속해서 그 다음 캐퍼시터를 경유하여 돌아오게 된다. 이 과정은 마지막 캐퍼시터를 만날 때까지 계속된다. 위 그림은 마치 캐퍼시터들이 떨어져 있는 것처럼 그려져 있는데, 이것은 표현을 위한 것이고 실제로는 캐퍼시터의 개수를 무한히 쪼개는 개념으로 생각을 하면 된다.

 

전류가 캐퍼시터를 통해 흐른다는 것은 캐퍼시터 안에 있는 유전물질의 다이폴(dipole)이 방향을 바꾼다는 것을 의미한다. 그런데 다이폴이 방향을 바꾸는 속도는 물질마다 다르고 우리는 이것을 유전률이라고 부른다. 기호로는 ε로 표시 한다.

  

유전률은 편의상 상대유전률을 사용하는 데, 상대유전율은 공기를 1로 했을 때의 상대적인 유전률을 의미한다. PCB재료로 많이 사용되는 FR-4 에폭시는 4.5 정도의 상대 유전률을 가지고 있다. 유전률이 제일 작은 공기가 다이폴의 방향 바꾸기를 제일 빠르게 할 수 있기 때문에 신호를 제일 빠르게 전달할 수 있다. 신호의 전달 속도는 유전률의 함수이며 다음과 같다.

 

  공기는 유전률이 1 이므로 속도는 빛의 속도와 같다. 1ns 동안 300mm를 진행한다. 유전률이 4.5 FR-4의 경우에는 141mm 정도를 진행한다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Frequency  (0) 2011.07.05
Basic > Signal > Fourier Analysis  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
:

Basic > Components > Resistor

PCB INSIDE/BASIC 2011. 7. 5. 21:45

Resistor (저항)

 

드라이버 칩에서 신호가 나와서 리시버에 신호가 도착할 때 가지의 모든 경로를 인터컨넥션(interconnection)이라고 하며 전기적 모델로는 resistor, inductor, capacitor로 묘사할 수 있다. 그리고 이 세 가지 모두는 전류의 흐름을 방해하는 성질 즉 impedance(임피던스)를 가지고 있다. 임피던스 중에서 Resistance는 상대적으로 inductance capacitance에 비해서 덜 중요한데, 그 이유는 resistive impedance는 주파수의 함수가 아니고 다른 두 성분인 capacitive impedance inductive impedance는 주파수의 함수이기 때문이다. 일반적인 신호 선의 경우 resistance는 거의 0 에 가까워 다른 두 성분에 비해서 전류의 흐름을 방해하는 정도가 매우 약하다. 따라서 많은 경우에 무시할 수 있다.

Resistor는 위 3가지 성분 중에서 resistance 성분을 다른 성분에 비해서 월등히 많이 가지고 있는 소자(부품) resistor라고 한다. 이상적으로는 resistance 성분만 가지고 있는 소자이다.

Resistor는 전류의 크기를 낮추는 성질을 가지고 있다. 그러나 전류의 위상(phase)은 바꾸지 않는다. 왜냐하면 앞 서 언급 했듯이 resistor는 주파수의 함수가 아니기 때문이다. 따라서 저항을 통과하는 전류는 동일한 전압 하에서 저항에 반비례하게 된다. 그리고 전압은 전류와 동일한 위상을 유지한다. 이것을 식으로 나타낸 것이 아래이다. 아래를 보면 시간과 관련된 요소가 없다.

 

도체의 저항 성분은 도체의 단면적에 비례하고 길이에 반비례한다. 그리고 도체를 이루는 물질(일반적으로는 구리)의 고유 저항(‘비저항이라고 부른다)에 비례한다. 이것을 식으로 나타내면 아래와 같다.

 

신호 선이 매우 길지 않으면, 신호 선의 저항 성분은 무시할 만 하다. 저항 성분은 신호 선 보다는 파워 선에서 중요하다. 파워 선에서는 흐르는 전류의 양이 신호 선일 때 보다 수 십 배 이상 많기 때문에 작은 저항 값에도 전압 강하가 일어날 수 있기 때문이다. 예상되는 전압 강하는 위 2개의 식을 이용하면 쉽게 예측할 수 있다. 즉 파워 선의 단면적과 길이를 가지고 저항 값을 예측하고 이렇게 구해진 저항 값과 소모될 전류 량을 곱해서 파워 선에서 발생할 것으로 예상되는 전압 강하 값을 예측한다.

앞에서 저항은 주파수의 함수가 아니라고 했는데, 도체의 관점에서는 맞는 말이다. 그런데 실제로 도체를 흐르는 전류의 입장에서는 주파수가 증가함에 따라서 저항 값이 커지는 것처럼 느껴지는데 이것은 스킨효과(skin effect) 때문이다. 이것은, 도체의 단면에서 보았을 때, 전류의 주파수가 높아지면 전류가 외곽 쪽으로만 쏠리게 되어 실질적으로 전류가 흐르는 단면적이 줄어드는 효과가 발생하기 때문이다. 전류가 외각으로 흐르려는 이유는 inductance 성분을 최소화하기 위함이다. Inductance를 줄이는 것이 궁극적으로 impedance를 낮추게 되기 때문이다(전류는 임피던스가 낮은 쪽으로 흐르려는 성질이 있다). 표면으로부터 전류가 존재하는 곳까지의 깊이를 skin depth라 부르는데, skin depth는 주파수가 증가함에 따라서 얕아지게 된다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Fourier Analysis  (0) 2011.07.05
Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
Basic > Impedance > Reactance  (0) 2011.07.05
: