'PCB INSIDE'에 해당되는 글 37건

  1. 2011.07.05 Basic > Signal > Fourier Analysis
  2. 2011.07.05 Basic > Signal > Propagation
  3. 2011.07.05 Basic > Components > Resistor
  4. 2011.07.05 Basic > Components > Capacitor
  5. 2011.07.05 Basic > Components > Inductor
  6. 2011.07.05 Basic > Impedance > Reactance
  7. 2011.07.05 Basic >Impedance > Resonance

Basic > Signal > Fourier Analysis

PCB INSIDE/BASIC 2011. 7. 5. 21:50

Fourier analysis (후리에 해석)


후리에 해석은 각기 다른 주파수를 가지고 있는 싸인 함수로 원래의 함수를 분해하는 것이다. 이 싸인 함수들을 다시 조합하면 원래의 함수로 돌아갈 수 있는데 이 경우는 후리에 합성이라고 부른다. 후리에라는 이름은 이것을 처음 소개한 프랑스 수학자 후리에에서 따온 것이다.

 

후리에 시리즈에 따르면 구형파는 사인파의 조합으로 표현될 수 있는데 다음 식과 같다.

 

위 식에서 무한대로 가게 되면 완전한 직각 모양의 구형파가 된다. 아래 그림들 살펴 보라.


더 많은 harmonic을 사용할수록 구형파에 더 가까워진다. 우리가 신호에 사용하는 파형들은 구형파에 가깝기는 하지만 완벽한 구형파는 아니다. 따라서 너무 많은 harmonic을 고려하기 힘들기 때문에 rise time에 해당하는 주파수 성분의 harmoic까지 고려하면 된다. 여기서 중요시 보아야 할 것은 1 번째 harmonic cos(ωt)에서 ω가 동작 주파수라는 것이다.

다시 한번 강조 하면 제일 높은 주파수 성분을 고려해야 한다. SI에 문제를 제일 크게 유발하는 부분 바로 그 부분이기 때문이다.

 

후리에 분석을 이용하면 매우 좋은 점이 하나 있는데, 그것은 신호를 시간 영역이 아닌 주파수 영역에서 볼 수 있다는 것이다. 신호의 주파수 구성 성분을 알면 신호를 처리하는데 여러 가지로 장점이 많이 생긴다.

식에서 눈치 챘을 수도 있는데, 신호의 주파수 성분이 불연속적이라는 사실도 기억하자.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Voltage  (0) 2011.07.05
Basic > Signal > Frequency  (0) 2011.07.05
Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
:

Basic > Signal > Propagation

PCB INSIDE/BASIC 2011. 7. 5. 21:48

Propagation (신호의 진행)

 

신호가 진행한다는 것은 어떤 루프가 형성이 되고 그 루프를 따라 전류가 흐른다는 것이다. 루프는 일반적으로 2개의 도체로 구성이 되는 데 하나는 칩에서 신호가 나오는 신호 선이며 다른 하나는 전류가 원래의 위치로 돌아가는데 필요한 선인 그라운드나 파워로 사용되는 선(실제로는 주로 판으로 구성)이다. 루프는 연결이 된 하나의 선인데 왜 2개가 필요하다고 하는 것일까? 사실은 2개의 선 사이에 캐퍼시터라는 두 선 사이의 다리 역할을 하는 것이 있어서 하나의 루프처럼 동작을 하게 된다. 그리고 이것을 전기적인 등가 회로로 그리면 아래 그림과 같다. 아래 그림에서는 돌아오는 쪽의 인덕터 성분은 생략했다.

 

위 두 그림 중에서 어느 그림이 맞을까? 정답은 첫 번째 그림이다. 전류는 칩에서 나오자마자 신호선과 리턴 경로 사이의 첫 번째 기생(?) 캐퍼시터를 경유하여 돌아오게 된다. 첫 번째 캐퍼시터가 충전이 다 되면 전류는 두 번째 캐퍼시터를 경유하여 다시 돌아오게 되고, 마찬가지로 계속해서 그 다음 캐퍼시터를 경유하여 돌아오게 된다. 이 과정은 마지막 캐퍼시터를 만날 때까지 계속된다. 위 그림은 마치 캐퍼시터들이 떨어져 있는 것처럼 그려져 있는데, 이것은 표현을 위한 것이고 실제로는 캐퍼시터의 개수를 무한히 쪼개는 개념으로 생각을 하면 된다.

 

전류가 캐퍼시터를 통해 흐른다는 것은 캐퍼시터 안에 있는 유전물질의 다이폴(dipole)이 방향을 바꾼다는 것을 의미한다. 그런데 다이폴이 방향을 바꾸는 속도는 물질마다 다르고 우리는 이것을 유전률이라고 부른다. 기호로는 ε로 표시 한다.

  

유전률은 편의상 상대유전률을 사용하는 데, 상대유전율은 공기를 1로 했을 때의 상대적인 유전률을 의미한다. PCB재료로 많이 사용되는 FR-4 에폭시는 4.5 정도의 상대 유전률을 가지고 있다. 유전률이 제일 작은 공기가 다이폴의 방향 바꾸기를 제일 빠르게 할 수 있기 때문에 신호를 제일 빠르게 전달할 수 있다. 신호의 전달 속도는 유전률의 함수이며 다음과 같다.

 

  공기는 유전률이 1 이므로 속도는 빛의 속도와 같다. 1ns 동안 300mm를 진행한다. 유전률이 4.5 FR-4의 경우에는 141mm 정도를 진행한다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Frequency  (0) 2011.07.05
Basic > Signal > Fourier Analysis  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
:

Basic > Components > Resistor

PCB INSIDE/BASIC 2011. 7. 5. 21:45

Resistor (저항)

 

드라이버 칩에서 신호가 나와서 리시버에 신호가 도착할 때 가지의 모든 경로를 인터컨넥션(interconnection)이라고 하며 전기적 모델로는 resistor, inductor, capacitor로 묘사할 수 있다. 그리고 이 세 가지 모두는 전류의 흐름을 방해하는 성질 즉 impedance(임피던스)를 가지고 있다. 임피던스 중에서 Resistance는 상대적으로 inductance capacitance에 비해서 덜 중요한데, 그 이유는 resistive impedance는 주파수의 함수가 아니고 다른 두 성분인 capacitive impedance inductive impedance는 주파수의 함수이기 때문이다. 일반적인 신호 선의 경우 resistance는 거의 0 에 가까워 다른 두 성분에 비해서 전류의 흐름을 방해하는 정도가 매우 약하다. 따라서 많은 경우에 무시할 수 있다.

Resistor는 위 3가지 성분 중에서 resistance 성분을 다른 성분에 비해서 월등히 많이 가지고 있는 소자(부품) resistor라고 한다. 이상적으로는 resistance 성분만 가지고 있는 소자이다.

Resistor는 전류의 크기를 낮추는 성질을 가지고 있다. 그러나 전류의 위상(phase)은 바꾸지 않는다. 왜냐하면 앞 서 언급 했듯이 resistor는 주파수의 함수가 아니기 때문이다. 따라서 저항을 통과하는 전류는 동일한 전압 하에서 저항에 반비례하게 된다. 그리고 전압은 전류와 동일한 위상을 유지한다. 이것을 식으로 나타낸 것이 아래이다. 아래를 보면 시간과 관련된 요소가 없다.

 

도체의 저항 성분은 도체의 단면적에 비례하고 길이에 반비례한다. 그리고 도체를 이루는 물질(일반적으로는 구리)의 고유 저항(‘비저항이라고 부른다)에 비례한다. 이것을 식으로 나타내면 아래와 같다.

 

신호 선이 매우 길지 않으면, 신호 선의 저항 성분은 무시할 만 하다. 저항 성분은 신호 선 보다는 파워 선에서 중요하다. 파워 선에서는 흐르는 전류의 양이 신호 선일 때 보다 수 십 배 이상 많기 때문에 작은 저항 값에도 전압 강하가 일어날 수 있기 때문이다. 예상되는 전압 강하는 위 2개의 식을 이용하면 쉽게 예측할 수 있다. 즉 파워 선의 단면적과 길이를 가지고 저항 값을 예측하고 이렇게 구해진 저항 값과 소모될 전류 량을 곱해서 파워 선에서 발생할 것으로 예상되는 전압 강하 값을 예측한다.

앞에서 저항은 주파수의 함수가 아니라고 했는데, 도체의 관점에서는 맞는 말이다. 그런데 실제로 도체를 흐르는 전류의 입장에서는 주파수가 증가함에 따라서 저항 값이 커지는 것처럼 느껴지는데 이것은 스킨효과(skin effect) 때문이다. 이것은, 도체의 단면에서 보았을 때, 전류의 주파수가 높아지면 전류가 외곽 쪽으로만 쏠리게 되어 실질적으로 전류가 흐르는 단면적이 줄어드는 효과가 발생하기 때문이다. 전류가 외각으로 흐르려는 이유는 inductance 성분을 최소화하기 위함이다. Inductance를 줄이는 것이 궁극적으로 impedance를 낮추게 되기 때문이다(전류는 임피던스가 낮은 쪽으로 흐르려는 성질이 있다). 표면으로부터 전류가 존재하는 곳까지의 깊이를 skin depth라 부르는데, skin depth는 주파수가 증가함에 따라서 얕아지게 된다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Fourier Analysis  (0) 2011.07.05
Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
Basic > Impedance > Reactance  (0) 2011.07.05
:

Basic > Components > Capacitor

PCB INSIDE/BASIC 2011. 7. 5. 21:44

Capacitor (캐퍼시터)

 

캐퍼시터는 도체 사이에 절연체를 넣어서 만든 3가지 수동 소자 중의 하나이다. 2개의 도체가 있으면 그 사이에는 반드시 capacitance 성분이 존재한다. 캐퍼시턴스는 두 도체가 바라보는 단면적과 두 도체 사이의 거리 그리고 절연체의 유전률에 의해서 결정이 된다. 아래 식은 학창 시절에 많이 보았을 것이다.

 

두 도체 사이의 거리가 너무 멀면 C는 거의 0에 가까워져서 무시할 수 있을 정도의 수준이 된다. 혹은 두 도체 사이에 바라다보는 면적이 매우 작으면 역시 C는 거의 0에 가까워져서 무시할 수 있을 수준이 된다. 무시할 수 있는 수준이냐 아니냐는 환경에 따라 달라진다. 기억할 것은 캐퍼시턴스를 컨트롤 할 수 있는 3 개의 변수가 있다는 것이다. 이것은 임피던스를 컨트롤할 수 있는 변수를 3개 가지고 있다는 것과 동일한 의미이다.

 

캐퍼시터는 DC 전류가 인가되면 전하를 보관하는 탱크 역할을 한다. DC신호는 차단을 한다. 반면에 AC 전류가 인가되면 캐퍼시터는 전류를 통과시키게 된다. 두 도체 사이를 통하여 흐르는 전류는 캐퍼시턴스의 크기와 두 도체 사이의 전압차 변화량에 비례하고 전압이 변하는데 걸리는 시간에 반비례한다. 식으로 표현하면 아래와 같다.

 

위 식을 살펴 보면, 이상적인 캐퍼시터는 주파수가 높아질수록(dt가 작아질 수록) 더 큰 전류를 통과 시킨다. 즉 손실 없이 더 잘 신호를 통과 시킨다. 주파수가 0이 되면, DC가 되면 캐퍼시터를 흐르는 전류는 0이 된다(위에서 언급한 내용이다).

 

실제의 캐퍼시터는 순수한 캐퍼시턴스 성분 이외에 약간의 저항 성분과 인덕턴스 성분도 가지고 있다(모든 도체는 적은 양이라도 어떤 식으로든 저항성분과 인덕턴스 성분을 가질 수 밖에 없다). 이것을 각각 ESR(equivalent series resistance) ESL(equivalent series inductance)이라고 부른다. 그런데 재미있는 것은 인덕이브 임피던스도 주파수의 함수라서 주파수가 높아지면 원래의 캐퍼시터가 가지고 있는 캐퍼시티브 임피던스와 경쟁을 하다가 어느 순간 둘의 크기가 동일한 지점에 오게 되면 그 캐퍼시터가 가질 수 있는 가장 작은 임피던스를 보이다가 주파수가 계속 더 높아지면 꼬리가 몸통을 흔드는 격으로 ESL이 더 중요한 역할을 하게 된다. 즉 캐퍼시터가 아니라 인덕터처럼 행동을 하게 된다.

 

캐퍼시터를 흐르는 전류는 위상에도 변화가 생기는데 전압이 전류보다 90도 뒤쳐지는 현상이 발생한다. 이것은 임피던스 파트를 설명할 때 다루도록 한다.



'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
Basic > Impedance > Reactance  (0) 2011.07.05
Basic >Impedance > Resonance  (0) 2011.07.05
:

Basic > Components > Inductor

PCB INSIDE/BASIC 2011. 7. 5. 21:43

Inductor (인덕터)

 

도체에 전류가 흐르면 그 흐르는 전류 주변에는 반드시 자기장이 발생한다. 그 도체가 어떤 모양이든 단면적으로 보았을 때 그 직선을 감싸는 둥근 모양의 자기장이 발생한다(플레밍의 오른손 법칙). 자기장을 많이 발생시키고 싶으면 도체의 모양을 직선으로 만들지 안고 둥글게 만들면 된다. 또한 둥근 모양을 많이 겹쳐 놓으면 더욱 많은 자기장을 유발할 수 있다. 인덕터는 이렇게 자기장이 많이 유발되도록 의도적으로 만든 소자이다. 기억해야 할 것은 어떤 도체든지 전류가 흐르면 자기장이 발생한 다는 것이고 그 자기장은 도체를 완전히 감싸며 루프를 형성한다는 것이다. 그리고 자기장은 그 것이 형성되는 물질의 유전률과는 무관하다. 그러면 인덕턴스는 어떻게 결정될까? 인덕턴스는 도체 주변을 감싸는 자기장의 수(N)에 비례한다. 즉 인덕턴스는 어떤 고정된 자기장의 값이 아니고 자기장 라인(플럭스)의 수에 관한 것이다. 따라서 인덕턴스는 도체의 기하학적 모양의 함수이다. 기하학적 모양에 의해 결정된 L값은 변하지 않는다. 따라서 I가 증가하면 N도 같이 증가하고 I가 줄어들면 N도 같이 줄어든다. 이것을 표현한 식이 아래이다.

 

같은 모양의 두 개의 도체 라인에 같은 방향으로 전류를 흘리면 적당히 떨어진 곳에서 인덕턴스는 2배가 되고, 각각 반대 방향으로 전류를 흘리면 0이 된다. 각 라인에 의해 형성된 자기장의 방향이 반대가 되어 상쇄되기 때문이다. 이처럼 인덕턴스는 어떤 도체 자기 자신만의 함수가 아니라 다른 도체에 의한 자기장의 영향도 받게 된다. 이것을 상호 인덕턴스라고 한다.

재미있는 현상은 자기장의 개수에 변화가 발생하면 도체의 길이방향으로 전압이 발생을 한다는 것이고 발생하는 전압은 변화하는 자기장의 개수와 직접적으로 관련이 있다는 것이다.

 

변화하는 자기장 루프의 개수가 많을수록 그리고 변화가 빨리 일어날수록 도체에 유발되는 전압은 커진다. 위 두 식을 합하여 다시 정리하면 다음과 같다.

 

위 식에서 알 수 있듯이 전류에 변화가 생기면 반드시 전압이 유발된다. 유발된 전압은 전류의 변화가 최소화 되는 방향으로 발생을 한다. 인덕턴스가 중요한 이유는 이렇게 유발된 전압이 신호의 품질에 영향을 주기 때문에 중요한 이유이다.

 

위의 특성을 정리하면, 인덕터는 전류량의 변화가 없는 DC는 잘 통과시키고, 전류의 변화를 억제하는 전압 발생 때문에 AC는 차단하는 역할을 한다. 주파수가 높아질수록 더 많이 차단된다. 이런 특성은 캐퍼시터와 정 반대되는 특성이다. 신호의 위상의 관점에서 보면 전류가 전압보다 90도 뒤쳐지는 현상이 발생한다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Impedance > Reactance  (0) 2011.07.05
Basic >Impedance > Resonance  (0) 2011.07.05
:

Basic > Impedance > Reactance

PCB INSIDE/BASIC 2011. 7. 5. 21:38

Reactance(리액턴스)

 

전류의 흐름은 resistance, capacitance, inductance에 의해서 방해를 받는다. 이러한 방해를 임피던스(impedance; Z)라고 하고 그 중에서 capacitor inductor에 의한 방해를 리액턴스(reactance; X)라고 한다. Reactance resistance와 다른 점은 reactance는 주파수에 따라 변하는 함수라는 점이다. 즉 주파수에 따라서 값이 커지기도 하고 작아지기도 한다. 또 하나 다른 점은 전류와 전압 사이의 위상을 90도 단위로 바꾼다는 것이다. 위상 개념이 들어가기 때문에 임피던스를 표현할 때는 복소수의 개념을 이용한다. 그래서 임피던스는 다음과 같이 표현이 된다.

 

캐퍼시터에 의한 리액턴스를 capacitive reactance라고 하는데, 이 리액턴스는 주파수가 커질수록 작아지고 또한 캐퍼시턴스가 커질수록 작아진다. 이것을 식으로 표현한 것이 아래이다.

 

앞에 마이너스(-)가 붙는 이유는 전압이 전류보다 90도 뒤쳐지기 때문이다(복소평면의 마이너스 Y축 상에 값을 갖는다).

인덕터에 의한 리액턴스를 inductive reactance 라고 하는데, 이 리액턴스는 주파수가 커질수록 커지며 인덕턴스가 커질수록 커진다. 이것을 식으로 표현한 것이 아래이다.

 

인덕티브 리액턴스는 전압이 전류보다 90도 앞선다(복소평면의 플러스 Y축 상에 값을 갖는다). 두 리액턴스 값은 복소평면에서 Y축에 표시되고 레지스턴스 값은 위상이 없기 때문에 X축의 플러스 축 상에 표시가 된다. 위 두 리액턴스를 합치면 리액턴스는 다음과 같다.

 

아래 그림은 임피던스의 각 성분에 따라서 어떠한 관계가 형성되는지에 대해서 설명하고 있다. 리액턴스 성분이 없다면 임피던스는 레지스턴스와 같아진다. 리액턴스 성분 중 인덕티브한 성분과 캐퍼시티브한 성분이 같지 않다면 둘 중에 하나의 성분이 주요하게 작용할 것이다. 그리고 아무리 캐퍼시티브하거나 인덕티브하더라도 레지스턴스 성분이 있으면 위상은 정확히 90도의 관계가 아니라 -90도에서 +90도 사이의 값을 갖게 된다



'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
Basic >Impedance > Resonance  (0) 2011.07.05
:

Basic >Impedance > Resonance

PCB INSIDE/BASIC 2011. 7. 5. 21:35

Resonance (공진)

 

먼저, 앞에서 언급된 소자들의 임피던스 특성을 살펴보자. 소자를 통해서 흐르는 전류는 파워를 제외하고는 대부분 AC이기 때문에 임피던스 특성을 살필 때 주파수의 함수로 보는 것은 매우 타당하다. 편의상 스케일을 log scale로 한다.

 

 저항은 주파수와 무관하고, 캐퍼시터는 주파수가 증가함에 따라서 임피던스가 낮아지고, 인덕터는 주파수가 증가함에 따라서 임피던스가 높아진다. 그러나 우리가 실제로 사용하는 소자들은 이상적인 단독 형태의 소자들이 아니다. 캐퍼시터의 경우 기생 inductance 성분이 있고, inductor의 경우에도 기생 capacitance가 있다. 따라서 실제의 소자들은 C L이 직렬로 연결되거나 병렬로 연결된 경우이다. 이런 경우의 impedance 특성은 아래와 같다.

 

C L이 조합이 되면 흥미로운 현상이 벌어지는데, 공진(resonance) 혹은 공명 이라고 하는 것이 발생한다. 이것은 낮은 주파수에서 주요하게 작용하던 성분이 주파수가 올라가면서 그 성분은 점점 줄어들고, 반대로 낮은 주파수에서는 힘을 쓰지 못하던 성분이 주파수가 올라감에 따라서 힘을 얻어서 두 성분간에 힘의 크기가 똑같아 졌을 때 발생한다. 이 경우는 리액턴스 성분이 0이 되어 임피던스는 레지스턴스 성분만 갖게 되는, 0에 가까운 저항 혹은 엄청 큰 메가급 저항처럼 보이게 된다. 이것이 발생할 때의 주파수를 공진(혹은 공명) 주파수라고 한다.

 

  공진 주파수를 잘 활용하면 효과적으로 noise 제거를 할 수 있는 있다. 부적절한 공진주파수의 선택은 noise 제어의 효율을 떨어뜨릴 수 있다. 왜냐하면 noise도 저주파 noise, 고주파 noise 등 여러 가지 주파수 성분을 가지고 있기 때문이다. 운이 정말 없다면, 병렬 LC 회로에서 공명주파수와 동작 주파수가 많나 최악의 결과(발진)를 만들어 낼 수 도 있다.


'PCB INSIDE > BASIC' 카테고리의 다른 글

Basic > Signal > Propagation  (0) 2011.07.05
Basic > Components > Resistor  (0) 2011.07.05
Basic > Components > Capacitor  (0) 2011.07.05
Basic > Components > Inductor  (0) 2011.07.05
Basic > Impedance > Reactance  (0) 2011.07.05
: