'접지'에 해당되는 글 7건

  1. 2019.11.24 Earth Ground, Chassis Ground, Signal Ground
  2. 2019.07.21 전장 설계를 위한 Ground 기초
  3. 2019.06.12 Electric Shock
  4. 2019.06.10 Neutral vs. Earth
  5. 2015.10.02 그라운드 루프에 기인한 EMI
  6. 2015.06.01 그라운딩 원칙 (1/3)
  7. 2015.06.01 그라운딩 원칙 (2/3)

Earth Ground, Chassis Ground, Signal Ground

전장 설계 그라운드 기초 2019. 11. 24. 09:04

아날로그 설계에서 신호와 그라운드의 관계는 설계의 기본(또는 근본)이며, 디지털 설계에서도 문제를 일으킬 수 있다. 그러나 개념으로서 "그라운드"는 샤시(원래는 발음은 채시라고 하는 것이 가까우나 모두가 샤시라고 부르니 샤시라고 한다) 그라운드, 신호 그라운드, 접지(earth) 그라운드 등 세 가지 다른 상황과 관련하여 혼동 될 수 있다. 세 가지 모두 이론적으로 0 전압에 연결 되지만 내용이 다르다샤시 그라운드는 장치(device)용 이고, 신호 그라운드는 장치 내 저전압 신호용 이고, 접지 그라운드는 전원 시스템용 이다. 

 0 전압은 이론적인 것이다. 임피던스가 0인 도체만 전압이 0 이다. 실제로 그라운드 면이나 레일은 무시할만한 수준에서 다양한 전압을 갖는다. 일반적이지 않지만 0 전압이 전혀 0에 가깝지 않은 경우가 있다. 이 경우는 대부분 회로나 장치가 높은 전류량으로 작동하거나 그라운드 도체의 임피던스가 높은 경우일 가능성이 크다. 옴의 법칙은 저항이 있는 물질을 통한 전류의 흐름은 0이 아닌 전압을 가짐을 말해준다. 와이어는 실제 환경에서 저항이 있으며 리턴 경로(그라운드)가 리턴 레일(그라운드 전압 레벨)에 영향을 준다배선의 저항이 한 장치의 리턴 경로에 직렬로 추가되고 다른 장치에는 아니면 그 장치에 대해서 다른 전압이 생성된다.

V = I R

 샤시 그라운드는 전기 장치의 금속 인클로저에 연결되는 그라운드 집합 지점이다. 샤시(또는 프레임) 그라운드는 쉴딩과 감전 방지를 위해 사용될 수 있다. 메인 접지(earth) 그라운드와 (이론적으로) 0V인 전원 레일은 함께 묶여 한 지점에서 샤시에 연결된다. 샤시 그라운드는 일반적으로 한 지점에서만 이루어진다. 이것은 가능하지만 바람직하지 않은 수단을 통한 리턴 전류 경로를 방지하고 샤시를 통해 전류가 순환하는 것을 막는다. 샤시를 통해 순환하는 전류는 "그라운드 루프"를 유발할 수 있다. 그러나 샤시가 한 지점에서만 접지되면 전류가 샤시를 통해 흐를 수 없다. EMF 노이즈를 유발하는 그라운드 루프는 계측이나 오디오처럼 노이즈에 민감한 응용 분야에서 특히  문제가 된다.

 두 개 이상의 장치를 연결할 때도 종종 그라운드 루프가 발생한다. 두 개의 그라운드가 정확하게 같은 전위가 아니기 때문에 전류가 흐른다. 매우 작은 전압이 발생해도 한 장치의 그라운드에서 다른 장치로 흐르게 되고 다시 처음 장치로 전력 분배 네트워크를 통해 제공되는 다른 그라운드를 통해 돌아 온다. 루프 그라운드의 임피던스는 수 옴의 일부로 아주 작은 부분일찌라도 노이즈 및 간섭을 일으키기에 충분하다. 그라운드 루프에 대한 일반적인 해결책은 별(star) 모양으로 분포된 그라운드에서 임의의 가장 낮은 전위 지점을 접지 연결 점으로 선택하는 것이다. 스타 분배에서 상호 연결된 모든 구성 요소는 그라운드에서 바깥쪽으로 방사 패턴으로 연결된다. 스타 분배를 신중히 실행하면 스타에 그라운드된 장비 간의 신호 배선이 거의 0 전위가 되어 그라운드 루프를 피할 수 있다.

 신호 그라운드는 신호가 측정되는 기준점 이다. 주워진 회로에 둘 이상의 그라운드가 있을 수 있다. 깨끗한 그라운드 또는 주입된 노이즈가 없는 그라운드 연결은 매우 작은 전압 레벨을 감지해야 하는 전기 장비에 필수적이다. 전기가 그라운드로 흐르는 경로가 여러 개 인 경우, 중복 그라운드 경로는 간섭 전류를 포착하여 전류를 전압 변동으로 변환한다. 그러면 시스템 그라운드 기준은 더 이상 안정적인 전위가 아니게 되고 노이즈가 신호의 일부가 된다. 

 신호 전압은 메인(예들 들어, AC 220V 단상) 전압보다 훨씬 작다. 상식적으로 신호 그라운드는 샤시 또는 전원(메인) 그라운드와 분리되어 있다. 신호가 주입된 노이즈보다 훨씬 큰 경우 그라운드 주입 간섭을 무시할 수 있다. 

 접지 그라운드는 안전상의 이유로 지표면으로 유도된 접지봉을 사용하는 관행을 계속 사용한다. 접지 그라운드의 일반적인 예는 가정용 전기 시스템이다. 전류는 주 회로 패널을 떠나 Hot 와이어를 통해 리셉터클(흔히 말하는 콘센트)로 흘러 가전 제품에서 소비된다(실행 가능한 경로를 통해 우회할 수도 있다). 그리고 neutral 와이어를 통해 다시 패널로 리턴 경로가 제공된다. 그라운딩은 세번째 와이어를 제공해서 회로를 완성할 수 없는 전류에 대한 경로를 제공한다.

 예를들어 노출된 도체 와이어는 그라운드 와이어가 아닌 경우 그라운드 경로에서 사람의 신체를 통해 전류가 흐를 수 있는 상황을 만들 수 있다. 그라운드 와이어는 전류를 안전하게 접지 그라운드로 소모하게 하고 과도한 전류로 인해 퓨즈를 트립한다. 고전압과 관련된 경우 접지 그라운드를 갖는 것은 특히 중요하다. 전기 장비에서 라이브 전압이 전도 새시와 접촉하는 고장이 발생한 경우, 시스템 내부 격리로 인해 장비가 계속 작동할 수 있지만 새시에 처음 접촉하는 사람은 그라운드로 가는 경로가 되어 심각한 부상이나 사망에 이를 수 있다. 퓨즈가 라이브 전압원 경로에 있더라도 퓨즈가 회로를 차단하고 개방하는 데 여전히 마이크로 또는 밀리 초가 걸린다. 따라서 접지 그라운드 및 고장 차단기는 대부분 고전압이 작동하는 곳에서 사용된다.

 그라운드 개념은 전기 개념과 실제에서 기본이라는 것이 분명하다. 매우 높은 전압 대비 작은 신호를 처리할 때 그 결과는 매우 다양하다. 그라운드 루프는 그라운딩이 경로를 만드는 어떠한 상황에서도 역할을 할 수 있다.



'전장 설계 그라운드 기초' 카테고리의 다른 글

잘못된 공통적인 믿음  (0) 2019.11.25
전장 설계를 위한 Ground 기초  (0) 2019.07.21
발전  (0) 2019.06.23
송전  (0) 2019.06.16
배전  (0) 2019.06.15
:

전장 설계를 위한 Ground 기초

전장 설계 그라운드 기초 2019. 7. 21. 20:00

'전장 설계 그라운드 기초' 카테고리의 다른 글

잘못된 공통적인 믿음  (0) 2019.11.25
Earth Ground, Chassis Ground, Signal Ground  (0) 2019.11.24
발전  (0) 2019.06.23
송전  (0) 2019.06.16
배전  (0) 2019.06.15
:

Electric Shock

전장 설계 그라운드 기초 2019. 6. 12. 22:00

 Condition

 Dry

 Wet or broken skin

 High-voltage

 RHUMAN

 100kΩ

 1000Ω

 500Ω


전류 량 (mA)

 증상

 1m

 살짝 따끔

 10~20

 근육 수축(전극에서 손을 놓기 어려움)

 50

 고통, 기진맥진, 기절 

 100

 심실 세동


Normal Case Without Earth Grounding


Ground Fault Case Without Earth Grounding

퓨즈 작동 조건 RSHORT = 200V/20A = 10Ω 이지만,

Short path resistance > RSHORT  이므로 퓨즈 작동하지 않음


Ground Fault Case With Earth Grounding

사람에게 매우 작은 전류가 흐르고 대부분은 접지 그라운드로 흐름


RCDcurrent imbalance를 감지하여 circuitbreak 시킴



'전장 설계 그라운드 기초' 카테고리의 다른 글

Voltage Range  (0) 2019.06.13
차단기  (0) 2019.06.13
Grounding 심볼  (0) 2019.06.11
Neutral vs. Earth  (0) 2019.06.10
접지 방식  (0) 2019.06.09
:

Neutral vs. Earth

전장 설계 그라운드 기초 2019. 6. 10. 23:00

 Neutral(중성)

 Earth(접지)

 Neutral line에서 옴

 Neutral line에서 오거나 별도로 실현됨

 일반적인 조건에서 전류가 흐르는 AC 회로 (Hot에서 나온 전류의 리턴 경로)

 잔류전류(residual current)에 대해 안전 목적으로 사용되는 최소 저항 경로

 항상 대전되어 있음

 일반적인 조건에서 전류 흐르지 않음 (절연 고장의 경우 전류가 흐를 수 있음)

 Earth로 바뀔 수 있음

 Neutral로 바뀔 수 없음

 배전 시스템의 기준(reference) 점

 기기의 접지(surging)점

  







'전장 설계 그라운드 기초' 카테고리의 다른 글

Electric Shock  (0) 2019.06.12
Grounding 심볼  (0) 2019.06.11
접지 방식  (0) 2019.06.09
접지 방법  (0) 2019.06.08
Solid Grounding  (0) 2019.06.07
:

그라운드 루프에 기인한 EMI

원 포인트 레슨 2015. 10. 2. 22:00

전자 회로나 시스템을 디자인하는 엔지니어는 그라운딩과 매우 친숙할 것이다. 왜냐하면 모든 회로와 시스템은 그라운딩 지점을 어떻게 배치할 다루어야 하기 때문이다. 그런 이유로 교과서와 전자기 호환 디자인 핸드북 등에서 그라운딩 지침을 가능하면 자세히 다루는 이유이다. 이런 책들을 읽을 , 개념은 분명히 기술되고 나는 회로, 블랙박스, 서브시스템, 시스템 등에 대에 어떻게 그라운딩 지를 이해하는 보였다. 그런데, 그라운딩 포인트를 어디에 어떻게 설치할지를 결정할 해야만 혼란스러워 지기 시작했다.

어떤 가이드 북에 그라운딩은 엔지니어가 구조(structure), 안전(safety), 파워(power supply), 신호(signal), 노이즈(noise), 시스템(system) 그리고, 낙뢰(lightning) 등에 대한 그라운딩 포인트를 자세히 식별해서 분류해야 한다고 되어 있다. 나는 너무 당황해서 그라운딩에 대한 아이디어가 전혀 나지지 않았다. 예들 들어, 어떤 그라운딩 포인트는 신호용으로 고려될 있지만, 안전이나 파워에 대해서도 기능할 있다. 3개의 그라운딩 포인트에 대해서 각각 다른 위치에 설정해야만 하나? 예전에 어떤 시스템에서 대해서  파워, 안전, 신호, 노이즈, 시스템 등등을 분리해서 그라운딩 포인트에 대해서 분석해 보았다. 시스템에서 파워에 대한 그라운드가 빠졌을 정상적으로 동작하는 것이 확인되었다. 시스템에서 파워에 대한 그라운딩 포인트가 정말로 필요한 것인지 의구심이 들기 시작했다.

"밀폐된 방에 6(n) 명의 전기 전자 엔지니어가 있다. 5(n-1) 그라운딩 전문가다".  이들이 같은 PCB, 블랙박스, 또는 시스템에 대해서 일할 그라운딩에 접근하는 많은 다양함이 있는 것은 사실이다. 이것이 그라운딩이 개념적으로는 기만적으로 간단하면서 어플리케이션에서는 낙심할 정도로 복잡 이유이고 논란과 논쟁이 끝나지 않는 이유이다.

엔지니어링에서 단일 (single-point) (multi-point) 그라운딩은 매우 보편적이다. 어떤 특별한 경우에 가지가 같이 요구된다. 이것은 회로가 정상적으로 동작하고 EMI 어떤 규정된 레벨 안에서 제어되고 있음을 의미한다. 다른 경우에, 상황은 변할 있다. 단일 그라운딩이 그라운딩보다 나을 있거나 반대 있다. 단일 , , 하이브리드 중에 어떤 선택이 최선인가? 이것은 엔지니어가 알고 싶어하는 질문이고 대답하기 매우 어려운 질문이다. 보통 달성해야 특정한 목표에 의존한다. 그라운딩을 알리기 위해서, 많은 이론과 엔지니어링 문서를 읽어야 한다고 생각했다. 그리고 이론은 실제와 조합되어야만 한다. 다음에서 내가 배운 실제 이야기 이다.

 

전에, 컴퓨터 대가 수입되어 건물의 2층에 위치한 우리 연구실에 설치 되었다. 컴퓨터 회사 엔지니어는 우리 연구실에 배설된 파워 네트워크에 대해서 신경 쓰지 않았다. 그들은 그들의 문서에 따라서 설치를 했다. 파워 네트워크로부터 EMI 제어하고 컴퓨터의 안전을 유지하기 위해서 380V/50Hz 트랜스포머(그림.1 C) 설치했고 안전 그라운딩(그림.1 D) 위해서 건물의 남쪽에 접지 파일(plie) 설치했다. 접지 저항은 2Ω 미만이어야 한다고 그들의 문서에 규정되어 있었다. 환경에서 컴퓨터는 동안 동작했다.

우리는 어떤 시스템에서 소프트웨어와 하드웨어의 시뮬레이션 테스트를 했다. 테스트를 , 시스템의 신호는 케이블을 통해서 컴퓨터로 전달된다. 컴퓨터는 즉각적으로 신호에 응답을 했을 것이다. 시스템과 컴퓨터가 연결 되기 전에, 각각은 독립적으로 돌아갔다. 불행하게도, 통신을 시작한 바로 순간 믿을 없는 현상이 나타났다. 컴퓨터와 시스템 모두 동작하지 않았다.


그림.1 연구실의 파워 공급


그것들은 분리되어 있을 때만 동작 했다. 무엇이 잘못된 것일까? 호환되지 않는 것일까? 이상한 현상은 무리를 혼란스럽게 만들었고 현상을 없애기 위해서 많은 시도를 보았다.

 

컴퓨터와 시스템 근처에 엘리베이터가 있었기 때문에, 엘리베이터 안에 있는 릴레이 배열에서 오는 EMI 신호가 테스트에 영향을 주는 것이라고 의심했다. 엔리베이터를 다운  시키고 테스트를 반복했다. 이상 현상을 없앨 없었다. 건물이 교통량이 많은 가에 있었기 때문에, 테스트를 자정에 시도해 보았다. 간섭을 없앨 없었다. 이런 실험 후에, 컴퓨터와 시스템 안에 있는 EMI 소스를 찾기 시작했다. 먼저, 전원 공급 와이어 간의 커플링을 의심했다. 그래서 와이어의 적절한 위치에 EMI 필터를 설치했다. 역시 작동하지 않았다. 이런 상황에 직면한 조심스런 조사가 수행되었다. 우리는 컴퓨터가 설치되기 전에 연구실과 시스템에 파워를 공급하는 다른 삼상 380V/50Hz 트랜스포머(그림.1 A) 있다는 것을 발견했다. 파워 공급 인입 레귤레이션에 따라서, 접지 파일이 건물의 북쪽에 설치 되었다(그림.1 B). 그리고 이것은 트랜스포머 A 외곽 쉴딩과 연결된다. 쉴딩에는 뉴트런(neutron) 와이어도 역시 연결된다. 문제는 접지 파일 B D 모두에 의해서 유발되었을 것이다. 그림.1 일치하는 그림.2 보여주면, B(트랜스포머 A 접지 파일), Ga(연구실의 안전 그라운드 포인트), G(컴퓨터와 시스템 간의 그라운딩 기준), Gb(컴퓨터의 안전 그라운드 포인트), D(트랜스포머 C 접지 파일) 그라운딩 루프를 형성하는 것이 분명해 진다.


그림.2 그라운딩 루프


D(또는 Gb) B(또는 Ga) 사이의 거리가 대략 15미터 이고 Gb(또는 Ga) D(또는 B) 사이의 거리가 최소 3미터 이기 때문에, 그라운딩 루프는 대략 45평방미터이다. 이것은 심각한 EMI 유발하기에 충분히 크다. EMI 문제를 해결하기 위해서, 취해야 행동은 접지 파일을 Ga(또는 Gb)에서 끊는 뿐이다. 이런 마법적 처리 뒤에, B-Ga-G-Gb-D-B 그라운딩 루프가 제거되었기 때문에 컴퓨터는 시스템과 매치되었다. 그라운딩 루프에 의해 형서오디는 EMI 제거 되었다.

그라운딩 루프의 효과가 그림.3 추상화 되어 있다.


그림.3 EMI 소스


루프 B-Ga-G-Gb-D-B 통해서 변하는 (field) 유도된 전압 e 만든다. 다음과 같이 예상할 있다.

E = - d * Φ/dt  = - sdB/dt

s:         루프 면적(m2)

dB/dt:   루프에 수직하는 자기 플럭스 강도

유도된 전압의 크기가 충분히 루르에 연결된 어떤 회로를 방해할 있다. 컴퓨터나 시스템이 동작하면, 루프를 통해 변화하는 전자기장이 반드시 있다. 유도된 신호 전위는 루프 경로를 따라서 만들어진다. 루프의 g 포인트에서 전위 eg 다음처럼 예상될 있다.

eg = ig (rg + jωlg) - sdB/dt

ig:            루프에서 모멘트 전류

rg + jωlg:  땅을 기준으로하는 포인트 g에서의 리액턴스

유도된 전압이 얼마나 큰지 알기 위해서, 오실로스코프를 통해서 관측을 시도 했다. 오실로스코프의 그라운드 포인트는 최대한 그림.2 Ga 가깝게 연결하였다. 그리고 오실로스코프의 입력은 가능한 연결된 케이블 가깝게 달린다. 관측된 신호는 랜덤하고 오실로스코프와 동기되지 않을 것이다. 최대 크기는 3V 이상이었다. 그것은 믿기에 너무 값이었다.

 

컴퓨터와 시스템을 포함한 시뮬레이션 연구실은 새로운 건물로 이사를 갔다. 그라운딩 루프로부터 EMI 제어하기 위해서, 새로운 그라운딩 시스템을 조심스럽게 설계했다. 우리가 취한 번째 단계는 연구실 밖에 있는 땅에 직경 20mm, 길이 3m 구리 막대기 4개를 박는 것이었다. 그것은 접지 파일을 구성한다. 번째 단계는 4개의 막대기 모두를 20mm, 두께 3mm 구리 리본으로 솔더링 하여 연결하는 것이다. 3 포인트 방법으로 측정된 그라운딩 저항은 0.6Ω 이다. 번째 단계는 연구실 안에 그라운딩 버스를 설치하는 것이다. 다음 접지 파일과 그라운딩 버스를 200mm, 두께 3mm 구리 리본으로 연결한다(그림.4) 번째 단계는 전원 공급 네트워크에서 적당한 위치에 EMI 필터를 설치하는 것이다.


그림.4 새로운 그라운딩 시스템


1991 이후로 연구실에서 많은  시뮬레이션 실험이 테스트 되었고 가끔은 하나 이상의 시스템이 같은 컴퓨터와 통신하였다. 지금까지 어떤 EMI 관찰되지 않았다. 그라운딩 시스템은 호환이 되는 것을 보여준다.

 

그라운딩 루프는 어떤 PCB, 블랙박스, 서브시스템, 스시템에도 존재할 가능성이 있다. 시스템이 커질수록, 예를 들어 비행기나 배에서의 전기 시스템, 그라운딩 루프에 의해 유발 되는 EMI 더욱 두드러질 것이다. 이런 종류의 EMI 제어하기 위해서 가장 좋은 방법은 그라운드 루프를 제거하는 이다. 제거하는 것이 불가능할 , 유효한 방법은 그라운딩 루프의 면적을 가능한 작게 제한하는 이다.

전자기 호환성이 승인된 옛날 시스템에 새로운 장비나 서브시스템을 추가하는 경우가 종종 있다. 이런 경우 EMI 제어는 모든 방면에서 고려되어야 한다. 어떤 부주의가 파워 공급, 케이블링, 그라운딩에 의해 그라운딩 루프를 형성할 있다.

 

원문: EMI Caused by A Grounding Loop. Guangfu Lui, AERODEV Electromagnetic Tech. Inc.

:

그라운딩 원칙 (1/3)

원 포인트 레슨 2015. 6. 1. 23:00

그라운딩(Grounding) 원칙

 

그라운딩 시스템 원칙을 논하고 그라운딩이 어떻게 안전과 퓨즈 혹은 회로 차단기 같은 장치 보호 회로의 효과적인 동작과 관련 있는지 살펴본다.

 

대부분의 엔지니어 또는 전문가에게 그라운딩은 간단한 주제이고 요구되는 지식보다 주의를 덜 받는다. 어떤 사람들에게는 그라운드가 있고 또한 깨끗한 그라운드(Clean Ground)도 있다. 30년 전에 컴퓨터가 상대적으로 새로운 것이었을 때, 전자회로와 컴퓨터의 그라운드에 대한 많은 접근이 있었다. 이런 접근 중의 일부는깨끗한 그라운드라 불렸는데 그것은 종종 파워 그라운드로부터 격리되었다.

이런 아이디어의 상당 부분은 효과가 없다는 것이 증명 되었고 때때로는 장비와 사람에게 위험하다. 주파수가 높아짐에 따라서(컴퓨터가 빨라짐에 따라서) 그라운딩, 쉴딩, EMI, 번개 보호와 정전기에 대한 연구가 가속되었다. 이런 연구는 그라운딩 뒤에 있는 기초 과학의 결과를 낳았다. 이 주제는 생각하는 것만큼 간단하지 않다. 기초 원리에 대한 이해를 분명히 해야 한다.

먼저, 회로의 그라운드 혹은 그라운딩은 잘못 명명된 이름이다. 대부분의 경우 이 용어는 회로를 땅(earth)으로 연결(connect)하는 것을 의미한다. 실제로 그것은 회로를 공통 기준 점에 연결하는 것이다. 대부분의 시스템에서 그것은 땅이다.

그라운드의 주요 목적은 다양한 전기 에너지 소스 간에 공통 기준점을 제공하는 것이다. 다양한 전기 에너지 소스의 예로는 다음이 있다.

  다양한 파워 시스템         - 공용 유틸리티, 사이트 생성, 배터리 시스템

  다양한 전압 시스템         - 138,000v, 13,800v, 480v, 120v, …

  다양한 에너지 소스         - 전기 에너지, 번개, 정전기, RF 에너지

전기 시스템의 그라운딩을 논할 때, 특히 파워 시스템에서, 어떻게 그라운딩 시스템이 과전류 보호와 관련되는지를 고려할 필요가 있다. 왜냐하면 그것은 동반되어 진행되기 때문이다.

그라운딩 시스템이 어떻게 작동하는지에 영향을 주는 잘못된 개념이 몇 개 있다. 다음 사실은 일반적으로 알려져 있지 않거나 잘못 이해되고 있는 것이다.

  땅이 항상 좋은 그라운드인 것은 아니다.

  60 Hz에서 허용할 만한 것이 고주파에서 항상 작동하는 것은 아니다.

  큰 도체를 가진 시스템의 상호연결(interconnection)은 부적절하게 설치될 때 효과적이지 않다. - 빌딩 주변의 그라운드 루프와 빌딩 간의 상호연결은 충분하지 않다. - 그라운드 도체는 위상 도체와 함께 도관 안에서 진행되어야만 한다(그라운드 도체는 도관 밖에서 상호연결처럼 행동한다).

  회로 차단기와 퓨즈의 사이즈가 적절할 지라도 항상 보호 되는 것은 아니다.

  쉴드 그라운딩은 중요한 문제를 유발할 수 있다. 대부분의 시간에서 그라운드는 하나의 단으로 끝나지만 항상 그렇지는 않다. 어떤 회로는 양단 그라운드를 필요로 한다.

  새로운 건축 방법과 재료는 실제 문제를 유발할 수 있다. -  전기적 도체로서의 유익이 있는 구조물 요소의 제거는 전기적 문제를 유발한다.

  부적절하게 설치된 번개 보호 시스템은 더 큰 손상을 유발할 수 있고 어떤 번개 보호도 하지 못 할 수 있다.

 

* 위상 도체: 다상(polyphase) 회로에서  중립(neutral)를 도체를 제외한 다른 어떤 도체

 

 

안전

실제로, 그라운딩의 목적은 공통 기준 점을 제공하는 것 보다 더 많다. 그것은 안전의 열쇠이다. 즉 다음을 보호 한다.

  사람

  장비

  시설

전기적 위험으로부터 사람, 장비, 시설을 보호하는 것을 고려할 때, 그라운딩과 과전류 보호 둘 다 고려할 필요가 있고 그것이 서로 어떻게 관련되는지 알 필요가 있다. 그것은 함께 진행된다. 어떤 시설의 전기 보호 시스템은 다음과 같은 의도가 있다:

  감전, 화재로부터 사람 보호

  고장, 화재로부터 장비와 시설 보호

  케이블 고장으로부터 전기 회로 보호

보호 시스템이 의도된 대로 작동하기 위해서, 먼저 작동 해야만 하고, 다음으로 위험을 제거하거나 최소한 최소화 하기에 충분히 빨리 작동해야만 한다. 그 곳이 적절한 그라운딩이 역할을 하는 곳이다.

다른 사실은, 대부분의 경우에 사고와 실패는 동시에 일어나는 2개의 이벤트나 고장 때문이다. 예들 들어, 빈약한 그라운드는 차체로 문제를 유발하지 않지만 쇼트 회로에 커플 되어 사고가 난다. 다르게 말하면, 부적절하게 설치되는 그라운드 시스템(부적절한 회로 보호를 갖고 있는)은 쇼트 회로가 발생할 때까지 문제를 유발하지 않을 것이다. 결국 회로 차단기는 열리지 않고 장비는 파괴될 것이다.

많은 경우에, 전기적 문제의 감소와 잠재적 제거는 적절한 그라운딩의 함수이다. 그라운딩은 오옴의 법칙을 적절히 응용해서 비정상적인 전압과 전류를 제어하는 것이다.

           E = IR

           E = IR + jIXC + jIXL

그라운딩은 E I의 효과를 줄이기 위해 R을 제어하거나 최소화 하는 것이다. 부적절한 그라운딩은 그라운딩이 없는 것보다 더 큰 위험을 초래할 수 있다. 그라운딩에 대한 잘못된 이해는 효과가 없거나 심지어 더 나쁜 즉 위험하고 부적절한 그라운딩 시스템의 설치를 이끌 수 있다.

 

 

전기 쇼크

전기 쇼크(감전)는 사람 몸의 두 부분이 다른 전위차를 가진 회로의 도체와 접촉할 때 몸을 가로 지른 전위차의 차이가 발생되어 일어난다. 사람 몸은 저항을 가지고 있고 몸이 전위가 다른 두 도체 사이에 연결되면 몸을 통해서 회로가 형성이 되고 전류가 흐른다.

사람 몸이 하나의 도체에만 연결되면, 회로가 형성되지 않고 아무 일도 일어나지 않는다. 사람 몸이 회로의 도체와 연결 될 때, 전압이 어떻든지, 위험 잠재성이 있다. 전위 차이가 클수록 위험은 크다. 전기 쇼크의 효과는 몸의 어떤 부위가 도체에 연결되었는지의 함수이다. 각 접촉 점의 저항 즉 접촉 부위에서 몸의 표면 저항도 또한 요소이다.

전기적 접촉이 인체를 경유하는 회로 경로가 심장을 가로지를 때, 사망할 잠재성은 최대가 된다. 아래 그림에 보이는 것처럼, 인체의 저항은 500 ohms부터 600k ohms까지 변한다. 피부가 촉촉해지면, 접촉 저항은 줄어든다. 피부가 소금을 포함한 땀 때문에 촉촉해지면 저항은 더 심하게 떨어진다. 아래 그림은 인체를 가로지르는 3개의 다른 전위차에서 인체를 흐를 수 있는 전류의 양을 보여준다. 또한 AC DC에서 다른 전류 레벨 효과를 보여준다. 궁극의 효과는 심장이 멈춰서 죽게 만드는 섬유화이다.

13,800v 같은 고 전압이 관여되면, 몸은 문자 그대로 익이서 터진다. 아래 그림은 또한 인체가 어떻게 감전될 수 있는지를 묘사하는 Safe Sally Suzie Sizzle 두 막대 그림을 보여준다. 여성의 이름은 단지 기억하기 좋도록 지어진 것이다.



쇼트 회로

전기 쇼크가 어떻게 발생하고 그라운딩이 어떻게 적용되는지 분석하기 위해서, 관련된 회로를 살펴볼 필요가 있다. 아래 그림은 소스(트랜스포머 또는 모든 AC 회로에 대한 제너레이터), 회로 보호, 도체(R1), 그리고 부하(RL)로 구성된 기초 회로를 묘사한다. 쇼트 회로는 파워 소스와 부하 사이에 의도하지 않은 어떤 연결(RSC)이다. 아래 두 번째 그림을 보라. 쇼트 회로는 완전 쇼트, 순간적인 쇼트, 간헐적인 쇼트, 또는 하이 임피던스 쇼트 등으로 분류된다. 완전 쇼트는 매우 드문 경우로 두 도체 사이의 저항이 매우 낮다. 많은 경우에 쇼트는 높은 저항성 쇼트이거나 순간적이거나 간헐적이다. 높은 저항성 쇼트는 고 저항이나 임피던스 연결로 시작하지만 일반적으로 낮은 임피던스 연결로 진행된다.

전기 시스템에서 쇼트는 phase-to-phase, phase-to-neutral, 또는 phase-to-ground로 분류된다. 아래 그림은 전형적인 phase-to-phase 또는 phase-to-neutral 쇼트를 보여준다.


아래 그림은 기본 phase-to-ground 쇼트를 보여준다. 대부분의 쇼트는 phase-to-ground이고 phase-to-phase 또는 phase-to-neutral로 시작해서 phase-to-ground로 진행한다.


쇼트 회로와 그것이 유발하는 손상으로부터의 보호를 생각할 때, 주워진 회로에서 흐를 수 있는 쇼트 전류의 최대 량을 알 필요가 있다.

AC 파워 시스템을 고려할 때, 공급 트랜스포머나 제너레이터의 임피던스가 가용한 쇼트 회로 전류 ISC의 양을 결정한다. 트랜스포머나 제너레이터로부터의 거리, 리드 길이, 도체 저항이 쇼트 전류의 양을 줄인다. 쇼트 회로 사이에 연결된 모터와 공급 트랜스포머나 제너레이터는 제너레이터처럼 행동해서 쇼트 전류의 흐름을 더 한다.

쇼트 회로가 유발할 수 있는 손상의 양과 타입을 생각할 필요가 있다. 완전 쇼트가 가장 파괴적이라고 생각할 수 있을 것이다. 임피던스가 가장 낮고 가장 큰 전류를 흘릴 수 있는 완전 쇼트가 실제로는 종종 가장 덜 파괴적이다. 간단한 아크가 화재를 유발함으로써 매우 파괴적일 수 있다. 대부분의 아크는 120VAC에서 0.5~1 ohm의 저항을 갖는다. 따라서 아크는 매우 짧은 시간 동안 120에서 240A 사이의 전류를 흘릴 수 있다. 이것은 14,400에서 28,800W 사이의 열을 만들어낸다. 20,000W는 모든 방향으로 날아가는 1/16” 직경의 구리 소립자를 만들 낼 것이다. 따라서 화재가 시작된다.


중요한 것은 어떤 단위 시간 동안 집중된 와트 밀도이다. 아래 그림은 그 시점을 묘사한다. 큰 구리 바를 통해서 흐르는 1000A는 어떤 것을 할 수 있는 충분한 열을 만들지 못하지만, 매우 작은 접촉 면을 가진 아크는 구리 소립자를 만들 수 있다. 이것을 바라보는 다른 관점은, 5W 크리스마스 트리 전구를 생각해 보라. 쇼트 회로의 대부분은 작은 전류가 흐르는 아크 결함이고 종종 화재로 이어진다.


쇼트 회로는 그것이 phase-to-phase, phase-to-neutral, 또는 phase-to-ground든지 간에 일반적으로 완전 쇼트가 아니라 상대적으로 높은 임피던스이다. 대부분의 120VAC 회로는 15A 퓨즈나 회로 차단기로 보호된다.  쇼트가 발생하면, 휴즈나 회로 차단기가 보호를 해서 회로를 오픈 시킬 것이라고 생각할 수 있다. 그러나 많은 경우에 그렇지 않다.

보호 장치가 기능하기 위해서, 쇼트는 감지할 수 있는 충분한 시간 동안 충분한 전류가 있어야만 한다. 15A 보호 장치에 대해서 15A 이상의 쇼트 전류가 있어야 한다. 아래 그림은 전형적인 퓨즈의 시간-전류 특성을 보여준다. 제일 왼쪽 곡선이 15A 퓨즈이다. 15A 퓨즈가 오픈 되고 고장을 종료시키려면 0.2초 동안에 100A가 필요하고, 10초 동안에 70A가 필요하며 1000초 동안에는 20A가 필요하다. 아크 회로는 긴 시간 동안에 구리 소립자를 만들 수 있고 퓨즈를 오픈 시키지 않는다.


과전류 보호는 주로 과부하와 어떤 타입의 쇼트 회로를 보호한다. 과전류 보호 시스템이 아무리 좋을지라도 그것이 항상 작동하는 것은 아니다. 대부분의 쇼트 회로는 phase-to-ground 고장으로 진행하기 때문에 ground 고장 보호가 추가 보호를 제공할 유일한 시스템이다.

 


:

그라운딩 원칙 (2/3)

원 포인트 레슨 2015. 6. 1. 22:30

그라운드

그라운드 라는 말은 일반적으로 전기 회로의 한 부분을 땅에 연결하는 것을 말한다. 이렇게 하는 이유가 몇 개 있다. 먼저, 우리의 시설과 장비는 하나 이상의 방법으로 땅에 연결된다. 왜냐하면 대부분의 물질이 어떤 확장으로 구성되기 때문이다. 또한 땅은 일반적인 조건 하에서 매우 도전적(conductive)이다.

좋든 싫든, 전기 회로, 근처 구조 물질, 그리고 땅은 내부적으로, 사고(accident), 혹은 인덕티브 그리고/또는 커패시티브 커플링에 의한 자연 현상으로 서로 연결된다. 토마스 에디슨이 전구를 발명한 후에 전기의 사용이 퍼지면서, 많은 화재와 사고가 발생했다. 각 전기 회로의 한 점을 공통 기준점인 땅에 연결함으로써, 전기 시스템 간에 전위 차이가 제어될 수 있고 전기 시스템이 안전하게 만들어 질 수 있다는 것이 발견되었다.

아래 그림은 어떻게 전기 시스템이 안전하게 만들어질 수 있는지 묘사하고 있다. 기본 원리를 설명하기 위해서 간단한 모터 회로의 예를 사용한다. 전기 시스템이 실패할 수 있는 많은 방법이 있다는 것을 이해 해야만 한다. 트랜스포머 와인딩은 트랜스포머 케이스에 쇼트 될 수 있다.  모터 와인딩은 모터 하우징에 쇼트 될 수 있고, 와이어는 서로 혹은 주변을 감싸고 있는 것과 쇼트 될 수 있다. 많은 움직이는 아이템은 다루어져야 할 정전기를 생성한다. 아래 그림에서 트랜스포머는 낮은 임피던스 연결 ZLO를 통해서 땅에 연결된 것을 보여준다. 이것은 일반적으로 제공되는 의도된 그라운드이지만, 또한 높은 임피던스 연결이 될 수도 있다. 아래 그림에서 가상적으로 모든 것이 함께 연결 되었다.


아래 그림은 모터 와인딩이 실패해서 하우징에 쇼트 되었을 때 사람이 모터 하우징을 만지면서 I 빔 같은 구조물에 닿아 있는 경우를 보여준다. Suzie Sizzle은 회로의 한 부분이 된다. 임피던스가 높기 때문에 회로 차단기는 열리지 않는다.


 아래 그림은 어떻게 모터가 스틸 컬럼에 그라운드 연결되어 설치되어야 하는지 보여준다.


아래 그림에서 다시 모터가 실패한다. 이번에는 Safe Sally가 될 수 있다.


쇼트 회로 전류는 낮은 임피던스 경로를 통해서 흐른다. 이 그림에서 건물 철과 파워 그라운드 사이에 높은 임피던스 연결 문제가 또한 묘사된다. Sally는 여전히 안전하겠지만 모터는 실패할 것이다. 높은 임피던스 때문에 실패 전류는 적고 회로 차단기는 열리지 않을 것이다. 와인딩의 일부가 쇼트 되었기 때문에 모터는 과부하 될 것이고 열이 올라갈 것이고 아마 결국 불이 날 것이다. 보여진 높은 임피던스는 종종 우리가 땅이 낮은 임피던스 그라운드라고 믿는 데서항상 그런 것은 아니다 - 발생한다. 똑같은 상황이 트랜스포머가 높은 임피던스로 땅에 연결될 때 발생한다.

오늘날 대부분의 설치에서, 회로 도체는 아래 그림에서 보여지는 것처럼 도체를 물리적으로 보호하기 위해서 금속 도관 속에서 진행한다. 일반적으로 금속 도관은 땅에 연결 되고 종종 트랜스포머용 그라운드 시스템에 연결(bond)된다. 모터는 일반적으로 금속 도관에 직접 연결되지는 않고 종종 금속으로 만들어진 유연한 연결을 사용한다.


아래 그림은 유연한 연결이 끊어지거나 종종 일어 나듯이 연결이 poor할 때 발생한다.


아래 그림은 도관을 직접 모터에 연결할 때 발생한다. 모터의 진동과 움직임 때문에 연결이 끊어진다.


아래 그림에서 2개의 연결이 추가되었다. 먼저 트랜스포머가 빌딩 구조물 철에 연결(bond)되고, 다음으로 모터가 구조적 철에 연결(bond)된다. 이 예에서 Sally는 안전하다.


다음 그림은 본딩 점퍼를 보여둔다.


다음 그림은 그라운드 와이어가 회로 도체와 함께 진행하는 것을 보여준다. 도관 연결에서 특히 유연한 도관 타입에서, 끊어짐이 자주 발생한다. National Electrical Code에서는 모터의 유연한 연결 주변에 본딩 점퍼 또는 위상 도체와 함께 그라운드 도체를 진행할 것을 요구한다.


 


파워 소스

좋은 저 저항 땅 연결은 중요하다. 그러나 더 중요한 것은 좋은 등 전위 판이다. 그것은 한 시설 내에 있는 모든 건물과 구조물이 저 저항 경로를 통해서 서로 연결(bond)되는 것이다.

 

 

정의(Definitions)

그라운드 시스템

최소한 하나의 도체 또는 점(주로 중간 와이어나 트랜스포머 또는 제너레이터 와인딩의 중립 점)이 의도적으로 솔리드 하거나 임피던스를 통해서 그라운드 되는 도체 시스템. 그라운드 시스템의 타입에는 솔리드 그라운드, 저항성 그라운드, 임피던스 그라운드가 있다.

언그라운드 시스템

그라운드로의 의도된 연결을 갖고 있지 않은 시스템, 회로, 장치. 전위차 알림 또는 측정 장치나 다른 매우 높은 임피던스 장치 등은 예외

그라운드

전기 회로 또는 장비와 땅 또는 땅을 대신할 어떤 전도 바디 사이에 의도되거나 사고로 된 전도 연결.

그라운드 된 도체

의도적으로 그라운드 된 시스템 또는 회로. 중립 도체. 흰색

그라운딩 도체

장비 또는 그라운드 된 도체를 그리운딩 전극에 연결하는 데 사용되는 도체. 그라운드. 녹색.

 

아래 그림은 전형적인 삼상 시스템을 그라운딩 하는 몇 가지 방법을 보여준다. 대부분의 경우, 트랜스포머 2차는 솔리드 하게 그라운드 된다. 큰 시설에서, 그라운드에 저항성 연결을 제공하거나 심지어 연결에 인덕터를 사용하는 것이 가끔 중요하다. 이렇게 추가된 저항이나 임피던스는 그라운드 실패 전류의 양을 제한한다. 일반적으로 이런 타입의 시스템은 또한 그라운드 실패 모니터링을 한다.


: